Glycans participate in a number of important biological processes, such as molecular and cellular recognition, signaling and communication. Quantitative changes in glycosylation abundance and the corresponding glycan structures of glycoproteins have been shown to correlate evidently with many disorders and diseases. Therefore, quantitative profiling of glycan variations has been receiving considerable research attention for potential disease biomarker and drug target discovery. Mass spectrometry (MS) based stable isotope labeling is an effective method for quantitative glycomics. Several stable isotope labeling methods have been developed for comparative glycomics, including isotopic incorporation during permethylation, reducing end labeling with heavy and light compounds, and metabolic labeling with isotopic amino acids or sugar. However, all these labeling strategies are not without limitations. For example, isotopic labeling via permethylation or on the reducing ends requires additional steps and reagents, which may limit the labeling efficiency and reproducibility. The metabolic labeling approaches appear to be limited to the investigation of cells, and the high cost limits their application.

Enzymatic 18O-labeling, a well-established stable isotope labeling strategy, has been widely used in peptide/protein quantitation. Proteases that have high specificities on C-terminal residues, such as trypsin, Glu-C and Lys-C, can stably incorporate two atoms of 18O (18O$_2$) into the newly generated C-terminal carboxyl of peptides during proteolytic digestion, displaying a 4 Da mass shift for peptides. Numerous investigations have utilized proteolytic 18O$_2$-labeling for quantitative proteomic analyses. Enzymatic 18O-labeling is undoubtedly the most popular and powerful stable isotopic labeling strategies owing to its efficiency and simplicity: the labeling reaction occurs during enzymatic digestion, and all that is required is the presence of 18O-water. Thereby, costly reagents and laborious steps are avoided, and side reactions are also nonexistent. Furthermore, 18O does not cause any chromatographic isotope effects.

However, for relative glycan quantitation, 18O-labeling is still uncommon as compared to its extensive utilization in quantitative peptide/protein analysis. In the previous study, we reported that endoglycosidase universally incorporates 18O onto N-glycan reducing-ends during enzymatic release of N-glycans in the presence of H_2^{18}O. Based on this reaction, a novel GREOL strategy was proposed and effectively applied to MS-based relative glycan quantification. However, the drawback of this strategy is that because the innermost GlcNAc remains attached to its parent peptide after endoglycosidase hydrolysis, information concerning important core-fucosylation is consequently lost. Moreover, endoglycosidases have remarkable specificities on certain glycan structures and have
not yet been widely used as compared to peptide-N-glycosidase F (PNGase F). These shortcomings promote a strong motivation for us to label 18O onto the terminal GlcNAc with the widely used PNGase F.

PNGase F is an amidase that cleaves between the innermost GlcNAc and asparagine residues of virtually all subtypes of N-glycans from glycoproteins. PNGase F can characteristically introduce an 16O atom into the glycosylation site during enzymatic removal of N-glycans in H_2^{10}O, which allows unambiguous assignment of the glycosylation site due to a larger mass shift of 2.98 Da. The use of PNGase F is the most extensive and effective method for glycoprotein identification and quantitation. For example, Liu et al. developed an enzymatic 18O-labeling approach, which combined trypsin-mediated peptide 18O$_2$-labeling and PNGase F-mediated glycosylation site 18O-labeling, with the unique 6 Da mass difference specifically for glycoprotein quantification. Shakey et al. introduced an integrated strategy allowing for PNGase F-mediated glycosylation site 18O-labeling of hydrazide-enriched glycopeptides, with which they identified and quantitated 224 N-glycopeptides from mouse serum. However, PNGase F-catalyzed glycan 18O-labeling has not been implemented so far, not to mention its application to the glycan quantitation.

In the present work, PNGase F-catalyzed complete N-glycan 18O-labeling (PCGOL) was realized and successfully used for relative glycan quantification, which showed good linearity and high reproducibility within at least 2 orders of magnitude in the dynamic range. Furthermore, by combination of this newly developed PCGOL with our previously developed 18O-labeling for N-glycoproteome quantitation, a novel enzymatic 18O$_2$-labeling strategy was developed for comprehensive N-glycosylation quantification, achieving simultaneous quantification of glycans, glycopeptides and glycoproteins in a single workflow. Moreover, glycosylation changes in immunoglobulin G (IgG) associated with human hepatocellular carcinoma (HCC) were analyzed with the enzymatic 18O$_2$-labeling strategy as an example, and quantitative information concerning the glycan structure and the glycosite of IgG was obtained.

Results and discussion

Realization of PCGOL

We have noticed that there are no reported studies so far to show that PNGase F could catalyze glycan 18O-labeling, although PNGase F has been widely used in N-glycosylation identification and quantitation. We first tried to label the glycans with 18O by PNGase F catalysis under a basic pH condition, and found that under a basic pH condition (alkaline solution, pH 7.5–8.5), 18O cannot be labeled completely onto the glycan reducing end, resulting in an incomplete glycan 18O-labeling by PNGase F (Fig. S1T). PNGase F is an amidase that cleaves between the innermost GlcNAc and asparagine residues of almost all subtypes of N-linked glycans from glycoproteins, and the reaction mechanism of PNGase F involves two steps: first, glycoprotein is hydrolyzed into a protein and glycosamine by PNGase F-catalyzed digestion, and then the glycosamine undergoes deamination and forms glycans. We suspected that it is because of this mechanism basic reaction conditions are unfavourable to the PNGase F-catalyzed N-glycan 18O-labeling. As shown in Fig. S1b† (enlarged spectra of the peaks at m/z 1663 and 1665, for sodium adduct ions of HexNAc$_4$Hex$_3$ glycan), there is still a considerable signal of the $–1$ Da ion peak $[M – 1]$, indicating the existence of glycosamine. It seems that the alkaline condition of pH 7.5–8.5 would lead to free basic ammonia after the hydrolysis of glycosamine, and thus inhibit further hydrolysis due to the reversible deamidation process in equilibrium, leading to an incomplete hydrolysis and labeling of glycosamine (Fig. S1c†).

We believed that an acidic condition should be in favor of the PNGase F-catalyzed N-glycan 18O-labeling, and therefore tried to adjust the basic pH to the acidic pH for complete labeling by the addition of formic acid (1% v/v) to break the balance of hydrolysis after the glycan was released by PNGase F. Delightfully, the 18O was completely labeled under the acidic conditions as expected (Fig. 1). Enlarged spectra of HexNAc$_4$Hex$_3$, a sample glycan pair at m/z 1663 and 1665, showed that the original $–1$ Da ion peak of glycosamine almost disappeared entirely, with no cross-labeling (Fig. 1b). As a consequence, the reaction balance of hydrolysis can be broken and the glycosamine completely hydrolyzed after the addition of 1% (v/v) formic acid (Fig. 1c), resulting in an almost 100% labeling efficiency. Furthermore, the structure of 16O/18O-16O-labeled glycan HexNAc$_4$Hex$_3$ from asialofetuin can be analyzed by means of tandem mass spectrometry. The major fragmentation of the glycan ions (B_2, B_3, Y_3, Y_4, Y_5) confirmed the diantenna complex type of HexNAc$_4$Hex$_3$, which was consistent with the N-glycan type of asialofetuin (Fig. 1d). Moreover, the assignments of diagnostic ions especially with 2 Da difference, such as m/z 933/935, 1136/1138, 1298/1300 and 1501/1503, further demonstrated that the 18O was stably labeled onto the reducing end of the glycans.

Thus, PCGOL was finally realized with almost 100% labeling efficiency. According to the importance of PNGase F-mediated glycosylation site 18O-labeling in glycoproteomics research, we believe that the realization of PCGOL has potential application value and broad application prospects in glycomics research.

PCGOL for relative glycan quantitation

We then applied PCGOL to the relative glycan quantitation. In order to avoid isotope interference, a deconvolution method previously developed was used: both isotope distribution and the partial 18O labeling were taken into consideration (ESI S-1†). The linearity and reproducibility were accessed using ribonuclease B (high mannose type), ovalbumin (variety of the N-glycan type), and asialofetuin (complex type) as models. The 16O-labeled and 18O-labeled glycans were mixed in proportions of $10 : 1$, $5 : 1$, $2 : 1$, $1 : 1$, $1 : 2$, $1 : 5$, and $1 : 10$ (v/v) and then analyzed by MS with six replicates for each ratio. Dual-logarithm plots between the theoretical and the corresponding measured ratios for six glycans were generated, showing high accuracy with the slope of six glycans ranging from 0.95 to 1.08 and the Y and X intercept ranging from $–0.078$ to 0.074 (Table S1†).

This journal is © The Royal Society of Chemistry 2015

Analyst Paper

Analyst, 2015, 140, 1082–1089 | 1083
Meanwhile, the overall coefficients of variation (CVs) ranging from 3.95% to 19.5% indicate good reproducibility (Table S1†). In addition, as shown in Fig. 2, the quantitative results of six glycans show good linearity within the two orders of magnitude range (1 : 10 to 10 : 1) with correlation coefficients (R^2) higher than 0.99. Obviously a partial overlap of glycan pair isotope envelopes with 2 Da gaps causes no effect on the quantitative results after deconvolution. The above results demonstrate that PCGOL exhibits good accuracy, reproducibility and linearity with at least two orders of magnitude range, and can be used for relative glycan quantitation. So far, we have creatively established the PCGOL quantitative strategy, providing a powerful tool for N-glycan relative quantitation.

Enzymatic four 18O-labeling strategy

Based on the above successful PCGOL for quantitation, a new strategy of enzymatic 18O$_4$-labeling was eventually developed for the comprehensive N-glycosylation quantitation (Fig. 3a). The glycan reducing end and glycosylation site were labeled with 16O/18O during the N-glycan release by PNGase F in H$_2^{16}$O/H$_2^{18}$O, and the de-glycosylated proteins were digested with immobilized trypsin in H$_2^{16}$O/H$_2^{18}$O-prepared buffer for peptide 16O$_2$/18O$_2$-labeling. The 16O/18O-labeled glycans and peptides were mixed in 1 : 1 molar ratio respectively and then analyzed by MALDI-MS. The feasibility and stability of enzymatic 18O$_4$-labeling were investigated using asialofetuin as a model glycoprotein. Results show that all N-glycan peaks
present peak pairs, except for glycan fragments from loss of reducing ends. The enlarged spectrum of HexNAc₄Hex₅ directly indicates the existence of the peak pair (Fig. 3b). Although only 2 Da mass difference is observed between the 16O/18O-labeled glycans, it does not exhibit serious overlap of glycan pair isotopes due to the simple elemental composition and small molecular weight of glycans.

The peptide mass spectrum results also present the obvious peak pairs and show that the immobilized trypsin labeling method largely avoids the phenomenon of the 16O back into the tryptic peptide ends, making the 18O-labeling complete (Fig. 3c). For example, the enlarged spectrum of non-glycopeptide TPIVGQPSIPGGPVR presents an obvious peak pair with 4 Da gaps for 16O/18O-labeling, while the glycopeptide LCPDCPLLAPLDNR shows a clear peak pair with 6 Da gaps for 16O/18O-labeling. No appearance of back-labeled peaks and isotope peak overlap further demonstrate the efficiency and reliability of the trypsin labeling method. In proteomics research, LC-ESI-MS is extensively used for the large-scale analysis of peptides. Thus, we further analyzed 16O/18O-labeled peptides from asialofetuin in 1:1 molar ratio by LC-ESI-MS (Fig. S2a†), and demonstrated peak pairs with equal intensity and rare back-labeling for a great deal of peptides. The enlarged spectra of the non-glycopeptide CDSSPDASAEDVR (Fig. S2b†) and the glycopeptide LCPDCPLLAPLDNR (Fig. S2c†), both from asialofetuin, exhibit a peak pair with 4 Da and 6 Da gaps, respectively.

Eventually, the workflow of the enzyme-catalyzed 18O₄-labeling approach was established (Fig. 4): N-glycans are quantified through PCGOL with 2 Da difference; meanwhile, non-glycopeptides and glycopeptides are quantified by our previously developed tandem 18O stable isotope labeling with 4 Da and 6 Da difference. With this strategy, the changes of glycans, glycosylation level and glycoproteins can be identified and quantitated simultaneously and efficiently.

Enzymatic 18O₄-labeling strategy for quantification of N-glycosylation of IgG from normal and HCC sera

We further demonstrated the practicality of the enzymatic 18O₄-labeling strategy in comprehensive quantitation of N-glycosylation in biological samples. Since IgG plays an extremely important role in immune function, and the glycosylation variation of IgG is closely related to many pathological processes, we specifically quantified N-glycosylation of IgG from normal and HCC (human hepatocellular carcinoma) sera. IgG was effectively purified by SDS-PAGE (Fig. S3†), and then the protein bands of a heavy chain and light chain of IgG were cut off and used for enzyme-catalyzed labeling and MS analysis. The labeled glycans were analyzed by MALDI-MS and the labeled peptides were analyzed by LC-ESI-MS (Fig. S4†) for six replicates. All the quantitative results have deducted the effect of isotopic peak overlap. Finally, a total of 16 N-glycans were identified, in which 12 were quantified from IgG of both normal and HCC sera; only 3 glycans were found in the IgG
from the normal sample and only 1 glycan was found in the IgG from the HCC sample (Table S2†), with the CVs ranging from 6.1% to 19.9%, which showed good reproducibility. The quantitative results showed that the changes of IgG glycans between HCC and normal sera were all more than 20% (HCC/normal <0.83 or >1.20) (Table S2†), which showed the distinguishable down- or up-regulation of glycan levels in HCC/normal samples. The HCC/normal ratio (18O$_3$/16O$_3$) of the glycopeptide from IgG$_2$ and IgG$_4$ was 0.53 and 0.92 with CVs of 3.9% and 7.3%, respectively (Table S3†). No quantitative result of IgG$_1$ or IgG$_3$ was obtained probably due to the failure of identification and automatic quantitation of 6 Da peak pairs for their weak or interfered signals of glycopeptides. The ratios of HCC/normal sera for 6 non-glycopeptides (18O$_2$/16O$_2$) were between 0.90 and 1.93, with CVs of 6.1%–19.9% (Table S4†).

We further compared the quantitative results of glycans, glycopeptides and non-glycopeptides for the degree of glycosylation changes over the overall changes of glycoproteins. As shown in Fig. 5, the changes of all peptides are within 2 fold, and especially except for the G2 and N2 the ratios of all other peptides are about 1.0, showing almost no change and implying that there is no evident change in the overall protein and glycosylation level of IgG in HCC. However, compared with peptides, the changes of N-glycans are more significant. A total of 4 glycans change more than 2 fold, in which 3 glycans (GlcNAc$_4$Man$_3$Gal$_3$, GlcNAc$_3$Gal$_3$Man$_3$, and GlcNAc$_3$Man$_3$Gal$_3$Fuc) are up-regulated and 1 glycan (GlcNAc$_3$Man$_3$Fuc) is down-regulated in IgG of HCC. In total, the N-glycans with integrity chains, large molecular weight and bisecting GlcNAc types are generally increased, while the N-glycans with incomplete chains and less molecular weight are generally decreased. Therefore, our results obviously show that the alternation in the glycan structure is more significant than that in either glycosylated-protein or protein levels of IgG from HCC sera, which also support the fact that some glycoproteins produced by cancer cells have altered glycan structures, although the proteins themselves are common, ubiquitous, abundant, and familiar.21

It was worth mentioning that in-solution digestion was also used for the IgG glycosylation quantitation analysis, and the quantitative results were the same as that of in-gel digestion as described above. It showed that the two technical routes of in-gel and in-solution digestion were equally effective, and any of them can be used in the 18O$_4$-labeling strategy according to actual requirements.

Experimental

Materials and chemicals

H$_2$18O (97%) was purchased from Cambridge Isotope Laboratories (Andover, MA). PNGase F (glycerol free) was purchased from New England Biolabs (Ipswich, MA), and immobilized...
trypsin beads were purchased from Applied Biosystems (Carlsbad, CA). The 10 000 Da MWCO centrifugal filters were purchased from Millipore (Bedford, MA), and porous graphitized carbon (PGC) columns were purchased from Grace (Columbia, MD). Melon gel IgG spin purification kit was purchased from Pierce (Rockford, IL). Trypsin, ovalbumin, asialofetuin, ribonuclease B, and all other chemicals were purchased from Sigma-Aldrich (St. Louis, MO).

Release and labeling of N-glycans

An about 200 μg model glycoprotein (ovalbumin, asialofetuin, or ribonuclease B) solution was denatured at 95 °C for 10 min and divided into two identical aliquots. The aliquots were dried through vacuum centrifugation and redissolved in 100 μl H216O/H218O phosphate buffer (50 mM, pH 7.5), respectively. PNGase F (about 40 U) was then added to the samples, after which the samples were incubated overnight at 37 °C for glycan cleavage and labeling. Afterwards, the deglycosylated proteins were removed using a 10 kDa MWCO centrifugal filter at 4 °C for 30 min, and the purified glycans were further incubated at 37 °C for 2 h by adding 1 μl 1% formic acid (FA) for complete labeling. The treated glycans were desalted on a PGC column, and lyophilized through vacuum centrifugation. The deglycosylated proteins were used for digestion and labeling.

Digestion and labeling of the deglycosylated glycoproteins

The deglycosylated proteins were reduced with 10 mM dithiothreitol (DTT) at 56 °C for 30 min, alkylated in the dark with 50 mM iodoacetamide (IAA) at room temperature for 40 min, and precipitated with 6 volumes of chilled acetone at −20 °C for 3 h. The precipitates were respectively resuspended in 100 μl 50 mM NH4HCO3 buffer, incubated with 2 μg trypsin (1:50 for enzyme/substrate, w/w) at 37 °C for 4 h, and then digested overnight at 37 °C by adding another equal amount of trypsin. The reaction was quenched by heating to 95 °C for 10 min, and the tryptic peptides were filtered using 10 kDa MWCO centrifugal filters as described above.

Then the tryptic peptides were labeled with immobilized trypsin beads. Briefly, the peptides were redissolved in 100 μl H216O/H218O 20% (v/v) acetonitrile (ACN), respectively. Then, 2 μl of the immobilized trypsin bead slurry (20%, v/v) was washed with water and mixed with each peptide sample (1:50 for slurry/sample, v/v). Then the mixtures were incubated in the dark at 37 °C for 24 h to label the peptides. Afterwards, the immobilized trypsin beads were removed using a spin column by centrifugation (4000g) for 1 min, and the labeled samples were dried through vacuum centrifugation.

Purification and SDS-PAGE separation of IgG from serum

The serum samples, which were obtained with informed consent from three hepatocellular carcinoma (HCC) patients and three healthy individuals at the Zhongshan Hospital of Fudan University (Shanghai, China), were mixed in equal volume respectively. About 1 μl of pooled normal serum samples and HCC serum samples were applied to the isolation of IgG using the Melo™ Gel IgG Spin Purification Kit according to the reference manual. Briefly, the Melo™ gel suspension was transferred to the column and washed twice with purification buffer. The serum was diluted in purification buffer (1/10, v/v) and mixed with the Melo™ gel at room temperature for 10 min. After centrifugation (4000g) for 1 min, the purified IgG solution was collected, and desalted by ultrafiltration (14 000g) at 4 °C for 40 min with a 10 kDa MWCO centrifugal filter. Then, a total of 20 μg purified IgG obtained from different pooled serum samples and 1 μl serum were separated by 10% SDS-PAGE. The protein bands were visualized with 0.1% Coomassie blue R-250.

In-gel digestion and labelling

The gel pieces were washed with water and destainer (25% (v/v) ACN, 25 mM NH4HCO3) alternately. After drying with 100% ACN, the proteins were reduced with DTT and alkylated with IAA. Then the gel pieces were washed with water and dried with 100% ACN. Then 30 μl of 50 mM phosphate buffer, which was prepared in H216O/H218O, was added to the dried gel pieces respectively. Enough PNGase F (about 500 U) was added and then incubated at 37 °C for 24 h. Afterwards, glycans were extracted from the gel pieces by two extractions with approximately 100 μl H216O/H218O 50% (v/v) ACN and 100 μl 100% ACN, with agitation for 10 min each. The extracts were combined and filtered (14 000g) at 4 °C for 30 min with a 10 kDa MWCO centrifugal filter. Then 100 μl H216O/H218O 0.1% (v/v) FA was added to the filtrate respectively, and incubated at room temperature for 2 h. The glycans were desalted on a PGC column and dried through vacuum centrifugation. After enzymatic labeling of glycans, the proteins in gel pieces were digested with trypsin and enzymatic labeling. Briefly the gel pieces were washed with water thoroughly and dried as described above. Then 30 μl of 25 mM NH4HCO3 buffer containing 5 μg trypsin was added and 25 mM NH4HCO3 buffer was added and incubated in a shaker at 37 °C overnight. After incubation, the peptides were extracted with 100 μl of 50% (v/v) ACN aqueous solution containing 0.1% (v/v) TFA. The extracts were filtered using 10 000 Da MWCO centrifugal filters and dried through vacuum centrifugation. Afterwards, peptide labeling was performed with immobilized trypsin beads as described above.

MALDI-MS/MS analysis

The dried labeled glycans and peptides were dissolved in about 50 μl of 50% (v/v) ACN aqueous solution containing 0.1% (v/v) TFA and 1 μl aliquot of each dissolved sample was spotted onto a MALD target. After air drying, the sample spots were overlaid with 1 μl of 2,5-dihydroxybenzoic acid matrix (DHB, 50 mg ml−1 in 100% ethanol) and then analyzed using an Axima MALDI-QIT-TOF mass spectrometer (Shimadzu Corp., Kyoto, Japan) with a nitrogen pulsed laser (337 nm). CID was performed at a collision energy of 4 keV using argon as the collision gas. For the model glycoproteins, 18O- and 16O-labeled glycans were directly analyzed by MS and MS² to determine their labeling efficiency or pooled at various designated molar ratios (1:10, 1:5, 1:2, 1:1, 2:1, 5:1, and 10:1).
and then analyzed (six replicates for each ratio) to determine the linearity and reproducibility. For glycans from the purified IgG samples, \(^{16}\)O- and \(^{18}\)O-labeled glycans were mixed in a 1:1 molar ratio and then analyzed (six replicates) to determine the quantitative changes. The acquired mass spectra were interpreted manually using GlycoWorkbench, Glycan Mass Spectral Database, and GlycoBase (Version 2; http://glycobase.nibrt.ie/glycobase.html). For peptides from the model glycoproteins, \(^{16}\)O- and \(^{18}\)O-labeled peptides were mixed in a 1:1 molar ratio and analyzed.

Nano-LC-ESI-MS/MS analysis

The \(^{16}\)O- and \(^{18}\)O-labeled peptides from purified IgG samples were mixed in a 1:1 molar ratio and analyzed by nano-LC-ESI-MS/MS. Briefly, the dried labeled peptides were suspended in 5% (v/v) ACN containing 0.1% (v/v) FA (phase A), separated by a 15 cm reverse phase column with a gradient of 50%–45% phase B (95% ACN with 0.1% FA) over 60 min. The peptides were analyzed using an LC-20AB system (Shimadzu, Tokyo, Japan) connected to an LTQ Orbitrap mass spectrometer (Thermo Electron, Bremen, Germany) equipped with an online nano-electrospray ion source. The peptides were analyzed by MS and data-dependent MS/MS acquisition, selecting the 10 most abundant precursor ions for MS/MS with the dynamic exclusion duration of 60 s. The scan range was set from m/z 400 to m/z 2000.

MS/MS spectra were searched against the human International Protein Index IPI database (IPI human v3.45 fasta with 71,983 entries) by SEQUEST. The database search results were further analyzed statistically using PeptideProphet. A minimum PeptideProphet probability score (P) filter of 0.9 was selected to remove low-probability results and the N-linked glycosylation that did not occur at a consensus N-X-S/T motif (X ≠ P) was also removed. The peptide relative quantification was performed using a Mascot Distiller. The non-glycopeptides were analyzed by the built-in \(^{16}\)O\(/^{18}\)O\(_2\)-labeling quantification module, 23 and the deglycosylated peptides were analyzed by the newly built \(^{16}\)O\(/^{18}\)O\(_2\)-labeling quantification module.

Conclusions

In this study, we for the first time realized PCGOL with almost 100% labeling efficiency through the optimization of acidity of reaction buffer. With the success of PCGOL, the glycan \(^{18}\)O-labeling quantitation method was developed, which exhibited good accuracy, reproducibility and linearity with at least two orders of magnitude range. We believe that the newly developed PNGase F-catalyzed glycan \(^{18}\)O-labeling quantitation method has potential application value and broad application prospects in quantitative glycomics research.

Moreover, a new strategy of enzymatic \(^{18}\)O\(_2\)-labeling, which combined PCGOL with our previously developed TOSIL method (tandem \(^{18}\)O stable isotope labeling for N-glycoproteome quantitation), was creatively developed for the comprehensive N-glycosylation quantitation. Enzymatic \(^{18}\)O\(_2\)-labeling can be used for one-pipeline quantitative analysis of glycans, glycopeptides and non-glycopeptides, and realize comprehensive N-glycosylation quantification in a single experiment for both glycomics and glycoproteomics simultaneously, which was impossible heretofore. The new strategy promotes the combination of quantitative glycomics and glycoproteomics, and is potentially powerful for clinical investigations on glycosylation changes in diseases. The further challenge in application of the proposed \(^{18}\)O\(_2\)-labeling approach is to decipher the quantitative results for both glycome and glycoproteome in a synergetic manner in any selective physiological or pathological processes.

Acknowledgements

The research was supported by MOST 973 projects (2011CB910600, 2012CB910600, 2013CB911201), 863 project (2012AA022020), the National Natural Science Foundation of China (31100590), and the Shanghai Municipal Natural Science Foundation (11ZR1403000).

Notes and references

